[ad_1]
Инженеры Массачусетского технологического института и Национальной лаборатории возобновляемых источников энергии (NREL) разработали тепловую машину без движущихся частей.
Их новые демонстрации показывают, что он преобразует тепло в электричество с эффективностью более 40 процентов, что лучше, чем у традиционных паровых турбин.
Тепловой двигатель представляет собой термофотоэлектрический (TPV) элемент, аналогичный фотоэлектрическим элементам солнечной панели, который пассивно улавливает фотоны высокой энергии от раскаленного добела источника тепла и преобразует их в электричество.
Дизайн команды может генерировать электричество из источника тепла с температурой от 1900 до 2400 градусов по Цельсию или примерно до 4300 градусов по Фаренгейту.
Исследователи планируют включить элемент TPV в тепловую батарею сетевого масштаба.
Система будет поглощать избыточную энергию из возобновляемых источников, таких как солнце, и хранить эту энергию в сильно изолированных банках горячего графита.
Когда необходима энергия, например, в пасмурные дни, элементы TPV будут преобразовывать тепло в электричество и передавать энергию в электросеть.
С новой ячейкой TPV команда успешно продемонстрировала основные части системы в отдельных небольших экспериментах.
Они работают над интеграцией частей, чтобы продемонстрировать полностью работающую систему.
Оттуда они надеются масштабировать систему, чтобы заменить электростанции, работающие на ископаемом топливе, и создать полностью обезуглероженную энергосистему, полностью снабжаемую возобновляемой энергией.
«Термофотоэлектрические элементы стали последним важным шагом на пути к демонстрации того, что тепловые батареи являются жизнеспособной концепцией, — говорит Асегун Генри, профессор Роберта Н. Нойса по развитию карьеры на факультете машиностроения Массачусетского технологического института.
«Это абсолютно важный шаг на пути к распространению возобновляемой энергии и переходу к полностью обезуглероженной сети».
Генри и его сотрудники опубликовали свои результаты сегодня в журнале Nature.
Прыгать через разрыв
Более 90 процентов электроэнергии в мире поступает из источников тепла, таких как уголь, природный газ, ядерная энергия и концентрированная солнечная энергия.
В течение столетия паровые турбины были промышленным стандартом для преобразования таких источников тепла в электричество.
В среднем паровые турбины надежно преобразуют около 35 процентов тепла в электричество, при этом около 60 процентов представляют собой самый высокий КПД любого теплового двигателя на сегодняшний день. Но механизм зависит от движущихся частей, температура которых ограничена.
Источники тепла с температурой выше 2000 градусов по Цельсию, такие как система тепловых батарей, предложенная Генри, были бы слишком горячими для турбин.
В последние годы ученые изучают твердотельные альтернативы — тепловые двигатели без движущихся частей, которые потенциально могут эффективно работать при более высоких температурах.
«Одним из преимуществ твердотельных преобразователей энергии является то, что они могут работать при более высоких температурах с меньшими затратами на техническое обслуживание, поскольку в них нет движущихся частей», — говорит Генри. «Они просто сидят и надежно генерируют электроэнергию».
Термофотоэлектрические элементы предложили один из путей исследования твердотельных тепловых двигателей. Подобно солнечным элементам, элементы TPV могут быть изготовлены из полупроводниковых материалов с определенной шириной запрещенной зоны — зазором между валентной зоной материала и его зоной проводимости.
Если фотон с достаточно высокой энергией поглощается материалом, он может вытолкнуть электрон через запрещенную зону, где электрон затем может провести, и, таким образом, генерировать электричество — делая это без движения роторов или лопастей.
На сегодняшний день большинство ячеек TPV достигли эффективности только около 20 процентов, а рекорд – 32 процента, поскольку они были сделаны из материалов с относительно узкой запрещенной зоной, которые преобразуют низкотемпературные низкоэнергетические фотоны и, следовательно, преобразуют энергию менее эффективно. .
Ловля света
В своей новой конструкции TPV Генри и его коллеги стремились улавливать фотоны с более высокой энергией от источника тепла с более высокой температурой, тем самым более эффективно преобразовывая энергию.
Новая ячейка команды делает это с материалами с большей шириной запрещенной зоны и несколькими соединениями или слоями материала по сравнению с существующими конструкциями TPV.
Ячейка изготовлена из трех основных областей: сплава с высокой шириной запрещенной зоны, который находится поверх сплава с немного меньшей шириной запрещенной зоны, под которым находится зеркальный слой золота.
Первый слой улавливает фотоны с самой высокой энергией источника тепла и преобразует их в электричество, в то время как фотоны с более низкой энергией, проходящие через первый слой, захватываются вторым и преобразуются для добавления к генерируемому напряжению.
Любые фотоны, которые проходят через этот второй слой, затем отражаются зеркалом обратно к источнику тепла, а не поглощаются в виде потерянного тепла.
Команда проверила эффективность ячейки, поместив ее над датчиком теплового потока — устройством, которое непосредственно измеряет тепло, поглощаемое ячейкой. Они подвергали клетку воздействию высокотемпературной лампы и концентрировали свет на ячейке.
Затем они меняли интенсивность лампы или температуру и наблюдали, как энергоэффективность элемента — количество производимой им энергии по сравнению с поглощаемым ею теплом — менялась в зависимости от температуры. В диапазоне от 1900 до 2400 градусов по Цельсию новый элемент TPV сохранял эффективность около 40 процентов.
«Мы можем добиться высокой эффективности в широком диапазоне температур, характерных для тепловых батарей», — говорит Генри.
Ячейка в опытах имеет площадь около квадратного сантиметра. Генри предполагает, что для системы тепловых батарей масштаба сети ячейки TPV должны будут масштабироваться примерно до 10 000 квадратных футов (около четверти футбольного поля) и будут работать на складах с климат-контролем, чтобы получать энергию от огромных банков хранимых данных. солнечная энергия.
Он указывает, что существует инфраструктура для производства крупномасштабных фотоэлектрических элементов, которые также могут быть адаптированы для производства TPV.
«Здесь определенно есть огромное положительное значение с точки зрения устойчивости», — говорит Генри. «Эта технология безопасна, экологически безопасна в течение всего жизненного цикла и может оказать огромное влияние на сокращение выбросов углекислого газа при производстве электроэнергии».
Это исследование было частично поддержано Министерством энергетики США.
Автор Дженнифер Чу.
[ad_2]
Source